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Abstract

General regression and classification models are constructed as linear combinations of
simple rules derived from the data. Each rule consists of a conjuction of a small number of
simple statements concerning the values of individual input variables. These rule ensembles
are shown to produce predictive accuracy comparable to the best methods. However their
principal advantage lies in interpretation. Because of its simple form, each rule is easy to
understand, as is its influence on individual predictions, selected subsets of predictions, or
globally over the entire space of joint input variable values. Similarly, the degree of relevance
of the respective input variables can be assessed globally, locally in different regions of the
input space, or at individual prediction points. Techniques are presented for automatically
identifying those variables that are involved in interactions with other variables, the strength
and degree of those interactions, as well as the identities of the other variables with which
they interact. Graphical representations are used to visualize both main and interaction
effects.

Key words and phrases: regression, classification, learning ensembles, rules, interaction
effects, variable importance, machine learning, data mining.

1 Introduction

Predictive learning is a common application in data mining, machine learning and pattern recog-
nition. The purpose is to predict the unknown value of an attribute y of a system under study,
using the known joint values of other attributes x = (1,22, -+, &, ) associated with that system.
The prediction takes the form § = F(x), where the function F(x) maps a set of joint values
of the “input” variables x to a value g for the “output” variable y. The goal is to produce an
accurate mapping. Lack of accuracy is defined by the prediction “risk”

R(F) = ExyL(y, F(x)) (1)

where L(y, §) represents a loss or cost for predicting a value § when the actual value is y, and the
expected value is over the joint distribution of all variables (x,y) for the data to be predicted.
Using this definition, the optimal mapping (“target”) function is given by

F*(x) = arg min Fyx, L(y, F'(x)). (2)
F(x)
With predictive learning one is given a “training” sample of previously solved cases {x;,y; }{

where the joint values of all variables have been determined. An approximation F(x) to F*(x)
is derived by applying a learning procedure to these data.
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2 Ensemble learning

Learning ensembles have emerged as being among the most powerful learning methods (see
Breiman 1996 & 2001, Freund and Schapire 1996, Friedman 2001). Their structural model takes
the form

M
F(x)=ap+ Z @ frn (X) (3)

m=1
where M is the size of the ensemble and each ensemble member (“base learner”) f,,(x) is a
different function of the input variables x derived from the training data. Ensemble predictions
F(x) are taken to be a linear combination of the predictions of each of the ensemble members,
with {a,, }3! being the corresponding parameters specifying the particular linear combination.
Ensemble methods differ in choice of particular base learners (function class), how they are
derived form the data, and the prescription for obtaining the linear combination parameters

{am}d".

The approach taken here is based on the importance sampled learning ensemble (ISLE)
methodology described in Friedman and Popescu 2003. Given a set of base learners { f,,(x)}
the parameters of the linear combination are obtained by a regularized linear regression on the
training data {x;,y; }Y,

N M M
{&m}(J)w = arg {({ni?M ZL (y'i ,ag + Z amfm(xi)> +A- Z |am | (4)

mIo =1 m=1 m=1

The first term in (4) measures the prediction risk (1) on the training sample, and the second
(regularization) term penalizes large values for the coefficients of the base learners. The influence
of this penalty is regulated by the value of A > 0. It is well known that for this (“lasso”) penalty,
larger values of A produce more overall shrinkage as well as increased dispersion among the values
{| @m |}, often with many being set to zero (see Tibshirani 1996, Donoho, et al 1995). Its value
is taken to be that which minimizes an estimate of future prediction risk (1) based on a separate
sample not used in training, or by full (multi—fold) cross—validation. Fast algorithms for solving
(4) for all values of A > 0, using a variety of loss functions L(y, ), are presented in Friedman
and Popescu 2004.

The base learners {f,(x)} used in (3) (4) to characterize the ensemble are randomly
generated using the perturbation sampling technique described in Friedman and Popescu 2003.
Each one is taken to be a simple function of the predictor variables characterized by a set of
parameters p = (p1,pa, - - -). That is,

fn(x) = [ Pp) (5)

where p,, represents a specific set of joint parameter values indexing a specific function f,,(x)
from the parameterized class f(x;p). Particular choices for such parameterized function classes
are discussed below.

Given a function class the individual members of the ensemble are generated using the pre-
scription presented in Friedman and Popescu 2003 and shown in Algorithm 1.

Algorithm 1
Ensemble generation

1 Fy(x) = argmin, vazl L(y;, )

2 Form=1to M {

3 Pm = arg ming Ziesm(n) L(yza Fm—l(xi) + f(xi; p))
4 fm(x) = f(x;Pm)

5 Fn(x) = Fpo1(x) + v+ fn(x)

6 }

7

ensemble = {f,(x) }{V[



In line 3, S,,(n) represents a different subsample of size n < N randomly drawn without
replacement form the original training data, S,,(n) C {x;,v:}Y. As discussed in Friedman and
Popescu 2003, smaller values of 7 encourage increased dispersion (less correlation) among the
ensemble members { f,,,(x)} by training them on more diverse subsamples. Smaller values also
reduce computation by a factor of N/n.

At each step m, the “memory” function

m—1

Frna(x) = Fo(x) +v- > fu(x)
k=1

contains partial information concerning the previously induced ensemble members { fx(x)}7" ™

as controlled by the value of the “shrinkage” parameter 0 < v < 1. At one extreme, setting v =0
causes each base learner f,,(x) to be generated without reference to those previously induced,
whereas the other extreme v = 1 maximizes their influence. Intermediate values 0 < v < 1 vary
the degree to which previously chosen base learners effect the generation of each successive one
in the sequence.

Several popular ensemble methods represent special cases of Algorithm 1. A “bagged” en-
semble (Breiman 1996) is obtained by using squared—error loss, L(y,9) = (y — #)?, and setting
v =0, and n = N/2 or equivalently choosing S,, (line 3) to be a bootstrap sample (Friedman
and Hall 1999). Random forests (Breiman 2001) introduce increased ensemble dispersion by ad-
ditionally randomizing the algorithm (“arg min”, line 3) used to solve for the ensemble members
(large decision trees). In both cases the coefficients in (3) are set to ag = 9, {a, = 1/M}M so
that predictions are a simple average of those of the ensemble members. AdaBoost (Freund and
Schapire 1996) uses exponential loss, L(y,§) = exp(—y - §) for y € {—1, 1}, and is equivalent to
setting v = 1 and = N in Algorithm 1. Predictions are taken to be the sign of the final memory
function Fj(x). MART (Friedman 2001) uses a variety of loss criteria L(y, ) for arbitrary y,
and in default mode sets v = 0.1 and nn = N/2. Predictions are given by Fj(x).

Friedman and Popescu 2003 experimented with a variety of joint (v, ) values for generating
ensembles of small decision trees, followed by (4) to estimate the linear combination parameters.
Their empirical results indicated that small but nonzero values of v (v ~ 0.01) performed best in
this context. Results were seen to be fairly insensitive to the value chosen for n provided it was
small (n < N/2) and grew less rapidly than the total sample size N (7 ~ v/N) as N becomes
large (N = 500).

Although in principle most of these procedures can be used with other base learners, they
have almost exclusively been applied with decision trees (Breiman, et al 1983, Quinlan 1993).

3 Rule based ensembles

The base learners considered here are simple rules. Let S; be the set of all possible values for
input variable z;, z; € S;, and s;,, be a specified subset of those values, s;, C S;. Then each
base learner takes the form of a conjuctive rule

Tm(X) = HI(ZBJ (S Sjm) (6)
j=1

where I(-) is an indicator of the truth of its argument. Fach such base learner assumes two
values r,,,(x) € {0,1}. It is nonzero when all of the input variables realize values that are
simultaneously within their respective subsets {x; € s }T. For variables that assume orderable
values the subsets are taken to be contiguous intervals

Sjm = (tjm, Wjm]

defined by a lower and upper limit, ¢, < z; < ujm. For categorical variables assuming un-
orderable values (names) the subsets are explicitly enumerated. Such rules (6) can be regarded
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Figure 1: A decision tree. The rule corresponding to each node is given by the product of the
indicator functions associated with all of the edges on the path from the root to that node.

as parameterized functions of x (5) where the parameters p,, are the quantities that define the
respective subsets {s;m, }.

Note that for the case in which the subset of values s;,, (real or categorical) appearing in a
factor of (6) is in fact the entire set s;,, = S;, the corresponding factor can be omitted from the
product. In this case the rule (6) can be expressed in the simpler form

rm(x) =[] I(z; € sjm). (7)

sjm,sésj

The particular input variables x; for which sj,, # S; are said to be those that “define” the rule
Tm(X). For purposes of interpretation it is desirable that the ensemble be comprised of “simple”
rules each defined by a small number of variables. As an example, the rule

I(18 < age < 34)
rm(x) = { -I(marital status € {single, living together-not married})
-I(householder status = rent)

is defined by three variables, and a nonzero value increases the odds of frequenting bars and
night clubs.

3.1 Rule generation

One way to attempt to generate a rule ensemble is to let the base learner f(x;p) appearing in
Algorithm 1 take the form of a rule (6) and then try to solve the optimization problem on line
3 for the respective variable subsets {sj»}. Such a (combinatorial) optimization is generally
infeasible for more that a few predictor variables although fast approximate algorithms might
be derived. The approach used here is to view a decision tree as defining a collection of rules
and take advantage of existing fast algorithms for producing decision tree ensembles. That is,



decision trees are used as the the base learner f(x;p) in Algorithm 1. Each node (interior and
terminal) of each resulting tree f,,(x) produces a rule of the form (7).

This is illustrated in Fig. 1 which shows a typical decision tree with five terminal nodes that
could result from using a decision tree algorithm in conjunction with Algorithm 1. Associated
with each interior node is one of the input variables z;. For variables that realize orderable
values a particular value of that variable (“split point”) is also associated with the node. For
variables that assume unorderable categorical values, a specified subset of those values replaces
the split point. For the tree displayed in Fig. 1 nodes 0 and 4 are associated with orderable
variable x14 with split points u and ¢ respectively, node 1 is associated with categorical variable
variable 32 with subset values {a,b,c}, and node 2 is associated with categorical variable z7
with the single value {z}.

Each edge of the tree connecting a “parent” node to one of its two “daughter” nodes represents
a factor in (7) contributing to the rules corresponding to all descendent nodes of the parent. These
factors are shown in Fig. 1 for each such edge. The rule corresponding to any node in the tree
is given by the product of the factors associated with all of the edges on the path from the root
to that node. Note that there is no rule corresponding to the root node. As examples, in Fig. 1
the rules corresponding to nodes 1, 4, 6, and 7 are respectively:

7”1( ) = 1(1‘14 < u)

re(x) = I(x14 < u)- I(x32 ¢ {a,b,c})
re(x) =1(t < w14 < u) I(z32 ¢ {a,b,c})
r7(x) = I(x14 > u) - (27 = 2).

3.2 Rule fitting

The collection of all such rules derived from all of the trees {f,,(x)}} produced by Algorithm 1
constitute the rule ensemble {ry(x)}. The total number of rules is

M

K= 2ty —1) (8)

m=1

where t,, is the number of terminal nodes for the mth tree. The predictive model is

(%) =do+ > _ arri(x) (9)
k=1

with

K
{ap}E = arg mln ZL(yl,a0+Zakrk xl>+)\~Z|ak|. (10)

{an}s 57 k=1 k=1
Fast algorithms for solving (10) for all values of A > 0, and procedures for choosing a value for
A, are discussed in Friedman and Popescu 2004.

The solution to (10) for A > 0 is not equivariant under different scaling transformations
applied to each of the predicting rules r;(x). Increasing the scale of a rule by ri(x) < by, - 75(x)
(b > 1) and decreasing its corresponding coefficient ay <« aj /by produces the same loss in
the first term of (10), but reduces its contribution to the second penalty term. Therefore, the
coefficients of rules with larger scales are penalized less than those with smaller scales. The scale
of a rule is characterized by its standard deviation

ty = v/sk(l — sg) (11)

where si, is its support on the training data

LN
Sk = > ra(xi). (12)
i=1

ot



A common practice is to give all predictors equal a priori influence, for example by replacing
each rule by a normalized version r(x) < 7,(x)/tx in (10). The strategy applied here is to use
the original unnormalized rules in (10). This places increased penalty on coefficients of rules
with very small support s ~ 0 and on those with very large support s ~ 1. The overall effect
is to reduce the variance of the estimated model (9) since rules with such small support, or
the complement of those with such large support, are each defined by a correspondingly small
number of training observations.

3.3 Tree size

As seen in Fig. 1 the size of each tree, as characterized by the number of its terminal nodes,
along with the tree topology, determines the maximum number of factors appearing in the rules
(7) derived from that tree. The topology of each individual tree is determined by the data.
However, larger trees generally allow more complex rules to be produced in terms of the number
of variables (factors) that define them. For example, the smallest trees with only two terminal
nodes (“stumps”) generate rules limited to one factor in (7), whereas an L terminal node tree
can in principle generate rules involving up to L — 1 factors. Thus, controlling tree size directly
controls maximum complexity, and indirectly the average complexity, of the rules that comprise
the ensemble.

Controlling tree size, and thereby average rule complexity, also influences the type of target
functions (2) that are most easily approximated by the ensemble. In order to capture interaction
effects involving [ variables the ensemble must include rules with [ or more factors. Thus targets
that involve strong high order interaction effects require larger trees than those that are domi-
nately influenced by main effects and/or low order interactions. On the other hand, for a given
size K (8), ensembles comprised of a large fraction of high order interaction rules will necessarily
involve fewer of lower order that are best able to capture main and low order interaction effects.
Therefore larger trees can be counter productive for targets of this type. The best tree size is
thus governed by the nature of the (unknown) target function.

The strategy used here is to produce an ensemble of trees of varying sizes from which to
extract the rules by letting the number of terminal nodes t,, of each tree be a random variable

tm =2+ fl(7).
Here 7 is randomly drawn from an exponential distribution with probability

Pr(v) = exp(—y/(L —2)) / (L - 2), (13)

and fl(v) is the largest integer less than or equal to 7. The quantity L > 2 represents the
average number of terminal nodes for trees in the ensemble. For L = 2 the entire ensemble will
be composed of rules each involving only one of the input variables and thereby capture main
effects only. Larger values produce trees of varying size t,,, mostly with ¢,, < L, but many
with t,, > L and some with t¢,, >> L producing some rules capable of capturing high order
interactions, if present. The fitting procedure (10) can then attempt to select those rules most
relevant for prediction. The use of an exponential distribution (13) counters the tendency of
trees (of a given size) to produce more rules involving a larger number of factors owing to their
hierarchical (binary tree) topology. The overall result is a more evenly distributed ensemble in
terms of the complexity of its rules.

The average tree size L is a “meta”parameter of the procedure that controls the distribution
of the complexity of the rules {ry(x)}# comprising the ensemble. A choice for its value can be
based on prior suspicions concerning the nature of the target F'*(x), or one can experiment with
several values using an estimate of future predictive accuracy based on an independent sample or
cross—validation. Also, examination of the actual rules chosen for prediction in (10) can suggest
potential modifications.



3.4 Loss functions

The procedures described above involve the specification of a loss function L(y, F') that charac-
terizes the loss or cost of predicting an outcome or response value F' when the actual value is
y. As described in Friedman and Popescu 2003 & 2004 these procedures can be implemented
with a variety of different loss criteria. Specific choices can have a substantial effect on predic-
tive models estimated from data, and are appropriate in different settings. For example, if the
deviations from the target F*(x) (2) follow a (homoskedastic) Gaussian distribution

yi ~ N(F*(x:),0%) (14)

then squared—error loss
L(y, F) = (y— F) (15)

is most appropriate.
For other distributions of a numeric outcome variable y, and especially in the presence of
outliers, the Huber 1962 loss

(y— F)*/2 ly—F| <3
L(y’F){ézay—m—é/m Y- F|>6 (16)

provides increased robustness while sacrificing very little accuracy in situations characterized by
(14) (see Friedman and Popescu 2004). It is a compromise between squared—error loss (15) and
absolute deviation loss L(y, F) = |y — F'|. The value of the “transition” point ¢ differentiates
the residuals that are treated as outliers being subject to absolute loss, from the other residuals
subject to squared—error loss. Its value is taken to be the ath quantile of the data absolute
residuals {|y; — F(x;) |}V, where the value of « controls the degree of robustness (break down)
of the procedure; smaller values produce more robustness. For all of the simulated regression
problems illustrated in the following squared—error loss (15) is used, whereas for the real data
examples Huber loss (16) with a = 0.9 was employed to guard against potential outliers.

For binary classification y € {—1,1} a variety of loss criteria have been proposed (see Hastie,
Tibshirani and Friedman 2001). Here we use the squared—error ramp loss

L(y, F) = [y — min(—1, max(1, F))]2 (17)

introduced and studied in Friedman and Popescu 2003 & 2004. It was shown to produce compa-
rable performance to other commonly used loss criteria, but with increased robustness against
mislabeled training cases.

4 Accuracy

An important property of any learning method is accuracy as characterized by its prediction risk
(1). As noted in Section 2 decision tree ensembles are among the most competitive methods.
Friedman and Popescu 2003 compared the performance of several decision tree ensemble methods
in a simulation setting. These included bagging, random forests, boosting, and a variety of ISLEs
using Algorithm 1 to construct the tree ensembles with various joint values for n and v, followed
by (4) to estimate the linear combination parameters. Here we compare the performance of rule
based ensembles discussed in Section 3 to best performing tree based ensembles studied there.

The simulation consisted of 100 data sets, each with N = 10000 observations and n = 40
input variables. Each data set was generated from the model

{yi = F*(xi) + &}y (18)

with F™*(x) being a different target function for each data set. These 100 target functions were
themselves each randomly generated so as to produce a wide variety of different targets in terms
of their dependence on the input variables x. Details concerning this random function generator



are presented in Friedman 2001 and also in Friedman and Popescu 2003. The input variables
were randomly generated according to a standard Gaussian distribution z; ~ N(0,1). The
irreducible error £ was also randomly generated from a Gaussian, ¢ ~ N(0,0?), with ¢ =
VarxF*(x) to produce a one-to—one signal-to-noise ratio. In addition to regression, data for
binary classification was produced by thresholding the response values for each data set at their
respective medians

{9 = sign(y; — median({yx}1))}7- (19)

The resulting optimal decision boundaries for each data set are quite different and fairly complex.

Here we present a comparison of four methods. The first “MART” (Friedman 2001) is
a popular tree boosting method. The second “ISLE” is the best performing tree ensemble
considered in Friedman and Popescu 2003 as averaged over these 100 data sets. It uses Algorithm
1 to generate the trees with n = N/5 and v = 0.01, followed by (4) to estimate the linear
combination parameters. In both cases the ensembles consisted of 500 six—terminal node trees.
The third method “RuleFit” here uses exactly the same tree ensemble produced by ISLE to
facilitate comparison, but then extracts the ten rules associated with each of the trees as described
in Section 3.1. The resulting collection of K = 5000 rules (8) is then used to form the the
predictive model (9) (10). The last method RuleFit 200 uses the same procedure except that
only the first 200 trees are used to extract K = 2000 rules for the final model. Although a large
number of rules are used to fit the model in (10), typically only a small fraction (~ 10%) have
non zero solution coefficient values and are thus required for prediction in (9).

The upper left panel of Fig. 2 shows the distributions (box plots) of the scaled absolute error

Ex[| Fy' (%) = Fu(x)[]

= [ =1,100 20
T Bl Fr (x) — median Fy (x) || ’ (20)

over the 100 regression data sets for each of the four methods. Here F}*(x) is the true target
function for the Ith data set, and Fj;(x) is the corresponding estimate for the jth method
(j = 1,4). One sees that these 100 target functions represent a wide range of difficulty for all
methods and that on average RuleFit provides slightly better performance. Using rules based
on only 200 trees is still competitive with the 500 tree MART ensemble, but somewhat inferior
to the 500 tree ISLE on these typically fairly complex target functions. The upper right panel
of Fig. 2 shows the corresponding distributions of the comparative absolute error defined by

cji = eji/ minfeg Yy (21)

This quantity facilitates individual comparisons by using the error of the best method for
each data set to calibrate the difficulty of each respective problem. The best method j* =
arg minj{ejl};*:l for each data set receives the value c;~; = 1, and the others larger values in
proportion to their average error (20) on that data set. Here one sees that RuleFit based on 500
trees yields the best performance, or close to it, on nearly all of the 100 data sets. There are a
few (~ 5) for which one of the other methods was distinctly better. Of course there are many
for which the converse holds.

The lower panels of Fig. 2 shows the corresponding results for the classification (19). Here
lack of performance is measured in terms of error rate

e = ExI[j # sign(Fy(x))] (22)

Again these 100 classification problems present varying degrees of difficulty for all methods with
error rates ranging by roughly a factor of three. Both rule based methods exhibit slightly superior
average classification performance to the tree based ensembles. This is especially reflected in the
corresponding comparative error rates (21) (22) shown in the lower right panel where RuleFit
based on 500 trees was the best on all most every data set, and even RuleFit 200 was substantially
better than either of the tree based ensembles with 500 trees.
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The results presented in Fig. 2 suggest that the rule based approach to ensemble learning
described in Section 3 produces accuracy comparable to that based on decision trees. Other
tree based ensemble methods including bagging and random forests were compared to those
presented here (MART, ISLE) in Friedman and Popescu 2003, and seen to exhibit somewhat
lower accuracy over these 100 regression and classification data sets. Thus, rule based ensembles
appear to be competitive in accuracy with the best tree based ensembles.

5 Linear basis functions

With ensemble learning there is no requirement that the basis functions { f,,,(x)}# in (3) (4) must

be generated from the same parametric base learner (5). Other basis functions can be included,
either generated from another parametric family using Algorithm 1, or by some other means.
For increased accuracy the different families should be chosen to complement each other in that
each is capable of closely approximating target functions (2) for which the others have difficulty.
For the purpose of interpretation each such family should also produce easily understandable
basis functions.

Among the most difficult functions for rule (and tree) based ensembles to approximate are
linear functions

* X) =by + ijil’j (23)
i=1

for which a substantial number of the coefficients b; have relatively large absolute values. Such
targets can require a large number of rules for accurate approximation. Especially if the training
sample is not large and/or the signal-to—noise ratio is small, it may not be possible to reliably es-
timate models with large enough rule sets. Also, models with many roughly equally contributing
rules are more difficult to interpret.

These considerations suggest that both accuracy and interpretability might be improved by
including the original variables {z;}} as additional basis functions in (9) (10) to complement
the rule ensemble. In the interest of robustness against input variable outliers we use the “Win-
sorized” versions

Li(z;) = min(éf,max(é;,xj)) (24)

where ¢, and 6;T are respectively the 8 and (1 — ) quantiles of the data distribution {z;;}Y,
for each variable z;. The value chosen for 3 reflects ones prior suspicions concerning the fraction
of such outliers. Depending on the nature of the data small values (5 ~ 0.025) are generally
sufficient.

With these additions, the predictive model (9) becomes

K n
x) =ao+ Y arrr(x) + Y _ bil;(z) (25)
k=1 =

with

({ar}iS, {b;}0) = arg }Hll?b v ZL Yi, 00 + Zakrk X; +Zb ili(xij)
Ak 50 > 1 ;=1

K n
S lak+> 16l |- (26)
k=1 j=1

In order to give each linear term (24) the same a priori influence as a typical rule, its normalized

Li(xj) < 0.4 - 1(x;)/std(l(z))

10
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Figure 3: Average absolute error for linear model, rules only model, and combined rules and
linear base learners

is used in (26), and then the corresponding solution coefficients {b;}7 (and intercept dg) are
transformed to reference the original i;(x;) (24). Here std(l;(z;)) is the standard deviation
of I;(x;) over the training data and 0.4 is the average standard deviation (11) of rules with a
uniform support distribution s ~ U(0, 1).

Owing to the selective nature of the lasso penalty in (26) many of the rule coefficient estimates
ay as well as those Bj of the less influential linear variables will often have zero values, and thus
need not appear in the final predictive model (25).

5.1 Illustration

To illustrate the potential benefit of including the original variables (24) as part of the ensemble
we consider simulated data generated from the model

N

35
y; =10 - H 6—21-?]. + inj +¢&; (27)
j=6 i=1

with N = 10000 observations and n = 100 input variables, of which 65 have no influence on the
response y. There is a strong nonlinear dependence on the first five input variables and a linear
dependence of equal strength on 30 others. All input variables were randomly generated from a
uniform distribution, z;; ~ U(0, 1), and the irreducible noise ¢; was generated from a Gaussian
distribution, &; ~ N(0,02), with o chosen to produce a two—to—one signal-to-noise ratio.
Figure 3 shows the distribution (box plots) of the scaled absolute error (20) over 100 data
sets randomly generated according to the above prescription, for three ensembles. The first
“linear” involves no rules; only the n = 100 linear variables (24) comprise the ensemble. The
second ensemble “rules” consists of K = 2000 rules generated as described in Section 3. The
third ensemble “both” is the union of the first two; it includes the 100 linear variables and the
2000 rules. As seen in Fig. 3, the purely linear model exhibits relatively poor performance; it

11



has trouble capturing the highly nonlinear dependence on the first five input variables (27). The
ensemble based only on rules provides somewhat improved performance by being better able to
approximate the nonlinearity while crudely approximating the linear dependence by piecewise
constants. The ensemble based on both linear variables and rules here provides the highest
accuracy. The selection effect of the lasso penalty in (26) tends to give high influence to the best
rules for approximating the nonlinear dependencies as well as to the appropriate linear terms
(24) for capturing the linear component in (27).

This example was constructed to especially illustrate the potential advantage of including
linear basis functions as part of rule based ensembles. In many applications the corresponding
improvement is less dramatic. For example, the target functions generated by the random
function generator used in Section 4 tend to be very highly nonlinear (see Friedman 2001)
and the performance of the rule based ensembles including linear functions (not shown) was
virtually identical to that based on rules alone as shown in Fig. 2. Also in many applications
the numeric variables realize a relatively small number of distinct values and the piecewise
constant approximations based on relatively few rules are at less of a disadvantage at capturing
linear dependencies. Including linear functions in the basis provides the greatest improvement
in situations where there are a substantial number of relevant numeric variables, each realizing
many distinct values, on which the target has an approximate linear dependence. However, even
in settings unfavorable to linear basis functions, as in Section 4, their inclusion seldom degrades
performance again owing to the selection effect of the lasso penalty in (26). In all the examples
presented below the ensemble includes the linear functions (24) for all of the input variables as
part of the basis.

6 Rule based interpretation

Rules of the form (7) represent easily understandable functions of the input variables x, as
do the linear functions (24). Although a large number of such functions participate in the
initial ensemble, the fitting procedure (26) generally sets the vast majority (~ 80% to 90%) of
the corresponding coefficient estimates ({ax}1<, {b;}7) to zero. As noted above, this selection
property is a well known aspect of the lasso penalty in (26). The remaining predictors (rules
(7) or linear (24)) will have varying coefficient values depending on their estimated predictive
relevance.

A commonly used measure of relevance or importance Ij, of any predictor in a linear model
such as (25) is the absolute value of the coefficient of the corresponding standardized predictor.
For rules this becomes

Ik-=|dk-|- Sk(l—sk) (28)

where s, is the rule support (12). For the linear predictors (24) the corresponding quantity is
I; = 1bj| - std(l;(x;)) (29)

where std(l;(z;)) is the standard deviation of I;(x;) over the data. Those predictors (rules or
linear) with the largest values for (28) (29) are the most influential for prediction based on the
predictive equation (25). These can then be selected and examined for interpretation.

The importance measures (28) (29) are global in that they reflect the average influence of
each predictor over the distribution of all joint input variable values. A corresponding local
measure of influence at each point x in that space is for rules (7)

Ie(x) = [ an |- | (x) = sk |, (30)

and for the linear terms (24)

Li(zg) = b - [l(25) = (31)
where I; is the mean of [;(x;) over the training data. These quantities measure the (absolute)
change in the prediction F'(x) when the corresponding predictor (74 (x) or [;(z;)) is removed from
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the predictive equation (25) and the intercept ag is adjusted accordingly. That is ao < do — G Sk
for rules, and ag < ag — BJZJ for linear predictors. Note that the average (root-mean—square) of
(30) (31) over all x values equates to the corresponding global measures (28) (29).

For a given coefficient value |ay |, the importance (30) of the corresponding rule for a pre-
diction at x depends on its value ri(x) € {0,1} at that point, as well as its global support (12).
A rule is said to “fire” at a point x if rx(x) = 1. From (30) a rule that generally does not
fire over the whole space (s small) will have higher importance in regions where it does fire.
Conversely, high support rules that usually fire will be correspondingly more important at points
x where they do not fire, 7(x) = 0. This symmetry is a consequence of the fact that replacing
a particular rule r(x) by its complement 1 — 7 (x) produces an equivalent linear model, so that
either one should be assigned the same influence as reflected in (28) (30).

The quantities (30) (31) permit one to evaluate the relative influence of the respective predic-
tors (rules or linear) for individual predictions F(x) at x. Those judged most influential can then
be examined for interpreting that particular prediction. These quantities can also be averaged
over selected subregions S of the input variable space

1(8) = |—;| S hxi) L(S) = |—;| 3 Liay) (32)

x; €S x; €S

where | S| is the cardinality of S. For example, one might be interested in those predictors that
most heavily influence relatively large predicted values

S ={x;|F(x;) = u} (33)

where the threshold v might be a high quantile of the predictions {F(x;)}V over the data set.
Similarly one might define S to be the set of lowest predicted values

S={x;|F(x;) <} (34)

with ¢ being a low quantile. In classification, y € {—1,1}, one might be interested in those rules
that most heavily influence the predictions for each of the two respective classes. In this case
S={x;|y; =1} or S ={x;|y; =—1} would be appropriate.

As with any linear model, the importance measures defined above are intended to estimate
the influence of each individual predictor (rule or linear) after accounting for that of the others
appearing in the ensemble. To the extent that the coefficient estimates are accurate, they will
reflect the corresponding influence on the target function (2). These influence measures may or
may not reflect the usefulness of individual predictors in the absence of others. For example,
a predictor on which the target function (2) has no dependence at all may be useful if it is
highly correlated with an important predictor, and the latter is removed from the ensemble.
The influence measures used here are based on the joint contributions of all members of the
ensemble.

7 Input variable importance

In predictive learning a descriptive statistic that is often of interest is the relative importance
or relevance of the respective input variables (z1, 2, - -, x,) to the predictive model. For the
models (25) considered here, the most relevant input variables are those that preferentially
define the most influential predictors (rules or linear) appearing in the model. Input variables
that frequently appear in important predictors are judged to be more relevant than those that
tend to appear only in less influential predictors.

This concept can be captured by a measure of importance J;(x) of input variable x; at each
individual prediction point x as

Ti(x) = L(x) + Y Te(x)/my. (35)

TIETE
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Here I;(x) is the importance (31) of the linear predictor (24) involving z;, and the second term
sums the importances of those rules (7) that contain z; (x; € rg) each divided by the total
number of input variables my that define the rule. In this sense the input variables that define
a rule equally share its importance, and rules with more variables do not receive exaggerated
influence by virtue of appearing in multiple input variable importance measures.

The distribution of {.J;(x)}? (35) can be examined to ascertain the relative influence of the
respective input variables locally at particular predictions x. As with rules these quantities can
be averaged over selected subregions of the input variable space using (32), or over the whole
space using (28) (29), in place of the corresponding local measures in (35). Illustrations are
provided in the data examples below.

8 Interaction effects

A function F(x) is said to exhibit an interaction between two of its variables ; and z, if the
difference in the value of F'(x) for different values of x; depends on the value of . For numeric
variables this can be expressed as

Prix)7’
Ex|=——=—| >0
* L%cj Oz,
or by an analogous expression for categorical variables involving finite differences. If there is
no interaction between these variables the function F(x) can be expressed as the sum of two
functions, one that does not depend on x; and the other that is independent of x

F(x) = fi;(x) + fie(x\k)- (36)

Here x\; and x\;, respectively represent all variables except x; and xy. If a given variable x;
interacts with none of the other variables then the function can be expressed as

F(x) = fi(z;) + fii(x) (37)

where the first term on the right is a function only of z; and the second is independent of ;.
In this case F'(x) is said to be “additive” in ;.
A function F(x) is said to have an interaction between three (numeric) variables z;, xx, and

x] if 9
PF(x)
B [m} >0,

again with an analogous expression involving finite differences for categorical variables. If there
is no such three—variable interaction F'(x) can be expressed as a sum of three functions, each
independent of one of the three variables

F(x) = fij(x) + Ar(xwe) + A(x)- (38)

Here x,;, x\x, and x\; each respectively represent all of the variables except w;, z, and ;.
Analogous expressions for the absence of even higher order interaction effects can be similarly
defined.

Knowing which variables are involved in interactions with other variables, the identities of
the other variables with which they interact, as well as the order and strength of the respective
interaction effects can provide useful information about the predictive process as represented by
the target function F™*(x) (2). To the extent that the predictive model F'(x) (25) (26) accurately
represents the target one can infer these properties by studying its interaction effects.

As noted in Section 3.3, in order for the predictive model F'(x) (25) to capture an interaction
among a specified subset of its variables it is necessary that it contain rules (7) jointly involving
all of the variables in the subset. This is however not a sufficient condition for the presence of
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such an interaction effect in F'(x). Different rules jointly involving these variables can combine
to substantially reduce or possibly even eliminate various interaction effects between them as
reflected in the overall model. Thus the mere presence of rules involving multiple variables
does not guarantee the existence of substantial interactions between the respective variables
that define them. In order to uncover actual interaction effects it is necessary to analyze the
properties of the full predictive equation, not just individual components. Here we use the
properties of partial dependence functions (Friedman 2001) to study interaction effects in the
predictive model.

8.1 Partial dependence functions

Given any subset x; of the predictor variables indexed by s C {1,2,---,n}, the partial dependence
of a function F(x) on x; is defined as

FS(XS) = Ex\s [F(Xsa X\s)] (39)

where x; is a prescribed set of joint values for the variables in the subset, and the expected
value is over the marginal (joint) distribution of all variables x\, not represented in x,. Here
X = (Xs,X\,) is the entire variable set. Partial dependence functions were used in Friedman
2001 to graphically examine the dependence of predictive models on low cardinality subsets of
the variables, accounting for the averaged effects of the other variables. They can be estimated
from data by

N
Fufx) = 5 D0 Flxexa) (10)
i=1

where {xi\s}f' are the data values of x\. Here we use the properties of centered partial depen-
dence functions to uncover and study interaction effects. In this section all partial dependence
functions as well as the predictive model F'(x) (25) are considered to be centered to have a mean
value of zero.
If two variables x; and zj, do not interact then from (36) the partial dependence of F'(x) on
X5 = (xj, 1) can be decomposed into the sum of the respective partial dependences on each
variable separately
Fj (l’j,xk) :Fj(xj)JrFk(l'k). (41)
Furthermore, if a given variable x; does not interact with any other variable then from (37) one

has
F(x) = Fj(z;) + Fj(xy))- (42)

Here F;(x\;) is the partial dependence of F'(x) on all variables except z;.

If variables x;, z1, and x; do not participate in a joint three—variable interaction, then from
(38) the partial dependence of F'(x) on these three variables can be expressed in terms of the
respective lower order partial dependencies as

Fii(xj, ok, 1) = Fir(zj, 2r) + Fj(xg, 2) + Fu(og, x) — Fj(r) — Fe(zg) — Fi(a).  (43)

Analogous relationships can be derived for the absence of higher order interactions. These
properties (41) (42) (43) of partial dependence functions are used to construct statistics to test
for interaction effects of various types.

To test for the presence of an interaction between two specified variables (z;, z1) the statistic

N N
Hyy = [Fye(ij, win) — Fi(wig) — Fe(wa)® Y Fp(wig, i) (44)
i=1

i=1

can be used based on (41) and the empirical estimates (40). It measures the fraction of variance
of Fji(xj,x1) not captured by Fj(x;) + Fj(x)) over the data distribution. It will have a value
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of zero if the predictive model F'(x) (25) (26) exhibits no interaction between x; and z; and a
correspondingly larger value for a stronger interaction effect between them. Similarly, a statistic
for testing whether a specified variable x; interacts with any other variable would be from (42)

N

N
H} = [F(xi) — Fj(wy) — B xa ) /Y F(xi) - (45)
=1 =1

This quantity will differ from zero to the extent that x; interacts with one or more other variables.
By examining the values of {H;}} one can identify those variables that participate in interaction
effects. For each variable z; so identified, the statistics {H;j }x; (44) can be used to identify the
variables that interact with ;. Note that only those variables that are deemed globally relevant
via (28) (29) (35) need be considered for interaction effects. This is often a small subset of all n
predictor variables.

If a particular variable z; is seen to interact with with more than one other variable using
(44), it is of interest to ascertain the order of these interactions. That is, whether z; interacts
separately with each of them or whether subsets of these variables jointly participate in higher
order interactions. Let zj and z; be two variables that are identified as interacting with x;.
This could represent separate two-variable interactions between (z;, ) and (x;, ;) only, or the
additional presence of a three-variable interaction involving (x;,zy,x;). A statistic for testing
these alternatives is from (43)

N
kal = Z[ij(wzj,wik,xil) — Fjip(xij, i) — Fji(xij, vi) — Fr(@ik, i) (46)
i=1
A~ A~ A~ N A~
+ Fj(aig) + Fr(a) + Fixa))* )Y Fha(wi, wie, i) -
i=1

This quantity tests for the presence of a joint three-variable interaction between x;, zx, and z; by
measuring the fraction of variance of ijl (xj, K, 1) not explained by the lower order interaction
effects among these variables. Analogous statistics testing for even higher order interactions can
be derived, if desired.

By considering the fraction of unexplained variance, the statistics (44) and (46) test for the
presence of the corresponding interaction effects in the predictive model F(x) but do not nec-
essarily reflect the importance of these effects to the overall variation of F(x). It is possible
for an interaction effect to be highly significant (see Section 8.3) but not very influential when
compared to the other effects in the model. If for interpretational purposes one would like to un-
cover these as well as the more influential interactions, these statistics (44) (46) are appropriate.
If it is desirable to ignore them so as to concentrate only on the highly influential interactions,
then the statistics can be modified accordingly. Replacing the denominators in (44) and (46)
with that in (45) will cause the resulting statistics to more closely reflect the importance of the
corresponding interaction effects to the overall model F(x).

8.2 Spurious interactions

The strategy outlined in the previous section is applied to the predictive model F(x) (25) (26).
As such, it will uncover interaction effects present in that model. However, interest is in interac-
tion effects present in the target function F*(x) (2) representing the true underlying predictive
relationships among the predictor variables x. It is possible that even a highly accurate predic-
tive model can contain substantial interaction effects that are not present in the target F™*(x).
These spurious interactions can occur when there is a high degree of collinearity among some
(or all) of the predictor variables in the training data {x;}%.

For example, if the target function exhibits a nonlinear additive dependence (37) on a vari-
able z;, this dependence on x; can be equivalently approximated by a corresponding additive
contribution to the model involving that variable alone, or by incorporating interaction effects
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involving other variables highly correlated with it. Thus it is not possible to easily distinguish
between low and higher order interactions among subsets of variables that are highly correlated
with each other. If interpretive value is to be placed on the presence of various interaction effects
then such spurious interactions should not be reported.

One way to discourage spurious interactions is to restrict their entry into the predictive model
F(x) (25) (26). Interactions enter the model through rules (7) involving more than one predictor
variable. Such rules are derived from trees that have splits on different variables at nodes along
the path from the root node to the nodes that define the respective rules (see Fig. 1). Thus
one can discourage the entry of unneeded interaction effects by placing an incentive for fewer
variables along each such path.

Trees are built in a top-down greedy fashion where the variable chosen for splitting at each
node is the one that yields the maximal estimated improvement to tree predictions as a result
of the split. The improvement Z; by potentially splitting the node on variable z; is estimated
for all variables, and the one

-k
= arg max Z;
J g1§j<n J

is chosen for splitting the node in question. Spurious interactions can be discouraged by modi-
fying this splitting strategy so as to place an incentive for repeated splits on the same variable.
Specifically,

P 7.

I = e e s

is used to split the node where x; = 1 if the variable =; does not appear as a splitting variable
at any ancestor node on the path from the root to the node being split, and k; = £ (k > 1)
if it does. This places a preference on fewer variables defining splits along such paths, and
thereby defining the rules derived from the tree. In particular, once a variable z; is chosen
for splitting a node, other variables that are highly correlated with it will be discouraged from
splitting its descendants and thus appearing with it in the same rule. Note that this strategy
does not necessarily discourage those variables that are highly correlated with z; from entering
the overall predictive model F(x) (25) (26). They are not discouraged from splitting nodes
in the same tree that do not contain a split on z; at an ancestor node, and from being used
for splitting in different trees. This strategy only discourages highly correlated variables from
defining the same rule (not different rules) and thereby suppresses spurious interaction effects in
the predictive model caused by collinearity.

The value chosen for the incentive parameter x should be large enough to effectively dis-
courage spurious interactions, but not so large as to inhibit genuine interactions from entering
the predictive model. It should be set to the largest value that does not degrade predictive
performance as estimated by a left out test set or full cross—validation.

8.3 Null distribution

In order to use the statistics presented in Section 8.1 for measuring the strength of various kinds
of interaction effects one must have an idea of their value in the absence of such effects. Even
if a particular interaction effect is absent from the target F™*(x), the sample based estimate of
the corresponding statistic will not necessarily be zero. Sampling fluctuations can introduce
apparent interactions in the estimated model F'(x). In addition, there are types of associations
among the predictor variables other than collinearity that if present can also induce spurious
interactions in the model (Hooker 2004) for which the strategy discussed in Section 8.2 is less
effective.

Here we present a variant of the parametric bootstrap (Efron and Tibshirani 1993) that can
be used to derive a reference (null) distribution for any of the interaction test statistics presented
in Section 8.1. The idea is to repeatedly compute these statistics on a series of artificial data
sets generated from the training data, and then use the distribution of test statistic values so
derived as a reference for the corresponding test statistic value obtained from the original data
set.

17



For regression, each artificial data set is given by {x;,%;}3 where
Ui = Fa(xi) + Wps) — Falxp(a)))- (47)

Here {p(i)}}V represents a random permutation of the integers {1,2, - -, N} and F4(x) is the
closest function to the target containing no interaction effects. For classification y € {—1,1},
the corresponding response values are

9 =2b;—1 (48)
where b; is a Bernoulli random variable generated with
Pr(b; = 1) = max(0, min(1, (1 + Fa(x;))/2)), (49)

and F4(x) is derived using (17). The “additive” model F4(x) can be estimated from the original
training data set {x;,y;}V by restricting the rules used in (25) (26) to each involve only a single
predictor variable. This is in turn accomplished by restricting the trees produced by Algorithm
1 to all have t,, = L = 2 terminal nodes. Other techniques for estimating additive models could
also be used (see Hastie and Tibshirani 1990).

By construction, each data set generated from (47) or (48) has a target F4(x) containing no
interaction effects. It has the same predictor variable joint distribution as the original training
data. It also has the same (marginal) distribution of the residuals {y; — F*(x;)}Y under the null
hypothesis F*(x) = F(x). .

For each artificial data set {x;, 7} (47) (48) a full predictive model F(x) is obtained by
applying the identical procedure (modeling parameters, etc.) used to obtain the predictive model
F(x) on the original training data {x;,v;}?V. The various interaction test statistics of interest
obtained from F(x) are computed on F(x). The collection of these computed values over all
artificially generated data sets can then be used as a reference distribution for the corresponding
values obtained from F'(x), under the null hypothesis of no interaction effects in the target F"*(x).
Ilustrations are provided in the data examples below.

8.4 Discussion

The general strategy of using partial dependence functions to detect and analyze interaction
effects can be applied to any function F(x), not just to those of the form (25) (26). All that is
required to compute partial dependence functions (40) is the value of F'(x) at various prediction
points x. Thus, this approach can be used with “black-box” prediction models derived by
any method provided a way to estimate Fa(x) (47) (49). The strategy for discouraging spurious
interactions outlined in Section 8.2 can only be used with tree based methods however. Inhibiting
spurious interactions can help to make the strategy more sensitive to the presence of genuine
interaction effects in the target F™*(x).

9 [Illustrations

In this section we present applications of the interpretational tools described in Sections 6 —
8 to several data sets. The first is artificially generated so that results can be compared to
known truth. The other two data sets are ones often used as test beds for evaluating prediction
methods. Following Friedman and Popescu 2003 the tree ensemble generation parameters used
in Algorithm 1 were v = 0.01 and 1 = min(N/2,100 + 6v/N), where N is the training sample
size. The average tree size (13) was taken to be L = 4 terminal nodes. Rules were derived from
ensembles of 333 trees producing approximately 2000 rules used in (26) to produce the predictive
model (25). These “default” parameter values were used for all examples presented here; it is
possible that individual results could be improved by selective tuning of some of these values.
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9.1 Artificial data

This data set consists of N = 5000 observations with n = 100 predictor variables. To somewhat
realistically emulate actual data the predictor variables were generated with ten discrete values
z;; € {k/10}), with the integers k randomly generated from a uniform distribution. Each
response value was taken to be

yi = F*(x;) + & (50)

where the target function is
3
F*(x)=9 H exp(—3 (1 — )?) — 0.8exp(—2 (x4 — x5)) + 2sin’(7 - x6) — 2.5 (v7 — xs)  (51)
j=1

and g; ~ N(0,0?) with the value of o was chosen to produce a two—to—one signal-to—noise ratio.
Note that this target depends on only eight of the predictor variables; the other 92 are pure
noise variables having no effect on the response. The coefficients multiplying each of the terms
in (51) were chosen so as to give each of the first eight variables approximately equal global
influence (28) (29) (35). The target function is seen from (51) to involve a strong three—variable
interaction effect among (x1, 2, 23), a somewhat different two—variable interaction between x4
and x5, a highly nonlinear additive dependence on x¢, and linear dependencies of opposite sign
on x7 and xg.

Applying RuleFit to these data produced a model (25) involving 351 terms (rules + linear)
with nonzero coefficients. The average absolute error

Exyly — F(x) |

aae Eyyly — median(y) | (52)

was aae = 0.49 as estimated with 50000 independently generated test observations. The cor-
responding error for a model involving main effects only (L = 2 ) (13) was 0.61. Using only
linear basis functions (24) in (25) (26) produced aae = 0.69. Thus, including additive nonlinear
terms in the model improves prediction accuracy by ~ 12% over a purely linear model, and
allowing interaction effects produces another ~ 20% improvement. However these prediction
errors include the irreducible error caused by the additive random component ¢; in (50). The
corresponding errors (20) in estimating the actual target function F™*(x) itself are respectively
0.18, 0.43, and 0.58. Thus, including interactions improved estimation accuracy by 58% over
a purely additive model. Of course with actual rather than artificially generated data one can
only estimate (52) and estimation inaccuracy on the target (20), while decreasing monotonically
with (52), is unknown.

9.1.1 Rule importance

Table 1

Simulated example: six most important rules — all predictions

Imp. Coeff. sup. Rule
100 0.57 0.49 0.25 < xg < 0.75
99 0.79 0.15 x7 >0.35 & z2 > 0.45 & 23 > 0.45
83 —0.81 linear: x7
63 0.61 linear: xg
61 0.34 0.51 0.35 <26 < 0.85
58 —0.38 0.25 x4 < 0.35 & x5 > 0.45

Table 1 displays the six globally most important terms (28) (29) resulting from the RuleFit
model (25) (26) in order of their estimated importance. Column 1 gives the respective
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Figure 4: Input variable relative importances for the simulated data as averaged over all (upper
left), the 10% lowest (lower left) and 10% highest (lower right) predictions, and for the single
prediction point {x; = 0.5}}" (upper right).

importances scaled so that the highest estimate receives a value of 100. Column 2 shows the
corresponding coefficients (a,b). For rules (7) the coefficient (&) value represents the change
in predicted value if the rule is satisfied (“fires”). For linear terms (24) the coefficient is its
corresponding slope parameter b. The third column gives the support (12), where appropriate,
for the respective rules displayed in column 4.

Comparing Table 1 with the (here known) target function (51) one sees that these six most
important terms (out of 351 total) provide a reasonable qualitative description of its dependence
on the 100 predictor variables. None of these terms include any of the noise variables {z;}$%.
The first and fifth rules indicate larger target function values when x¢ is in the middle of its range
of values. The second rule produces larger target values when x1, x2, and z3 simultaneously
realize high values. The third and fourth terms reflect the linear dependences on x7 and xg. The
sixth rule indicates smaller target values when x4 is small and x5 is large.

9.1.2 Input variable importance

The upper left frame of Fig. 4 shows the relative importance of the ten most important input
predictor variables (35), as averaged over all predictions (28) (29), in descending order of esti-
mated importance. By construction the target (51) depends on each of the first eight variables
x1 — xg with roughly equal (global) strength and has no dependence on zg — x100. Even though
the standard deviation of the irreducible error ¢ is here one half of that of the target function,
one sees that none of the 92 noise variables has estimated relative importance greater than 5%
of that for the eight relevant variables.
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Simulated data — Interactions
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Figure 5: Total interaction strength in excess of expected null value of the first ten input
variables for the simulated data. The lower red bars represent the null standard deviations.

The upper right frame in Fig. 4 shows the relative importance of the first eight predictor
variables plus the two most relevant noise variables for a single prediction point {z; = 0.5}{%
(30) (31) (35). Here one sees varying importance for each of the relevant predictor variables with
the (additive) variables {zg,z7,25} being somewhat more influential. The lower left and right
frames respectively show the corresponding relative variable importances for the 10% lowest (32)
(34) (35) and 10% highest (32) (33) (35) predicted target values. Here one sees that variables
1, T2, and x3 dominately influence the highest predicted values, whereas x4 — xg are most
influential for the lowest predictions.

9.1.3 Interaction effects

Figure 5 displays the strengths of the interaction effects involving each of the first ten predictor
variables. The height of the yellow bars shows the value of

A =H; — 1 (53)

where H; is given by (45) for each respective variable z; based on the original data, and H ;O) is
the mean (null) value of the same statistic averaged over ten runs of the parametric bootstrap as
described in Section 8.3. Thus, the height of each yellow bar reflects the value of H; in excess of
its expected value under the null hypothesis of no interaction effects. The red bars shown in Fig.
5 are the values of the standard deviations UJ(-O) of the respective null distributions, so that one
can visually gauge the significance of each corresponding interaction. The red bars are plotted
over the yellow ones so that the absence of a yellow bar indicates that the corresponding value
of Hj is less than or equal to one standard deviation above its null mean value H j(o).

The results shown in Fig. 5 suggest that variables z1, z2, and x3 are each heavily involved
in interactions with other variables. Variables x4 and x5 also substantially interact with other
variables but to a somewhat lesser extent. There is no evidence of any interaction effects involving

variables zg — T1g.
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Figure 6: Two—variable interaction strengths of variables interacting with x1 (upper), and
three—variable interaction strengths of variables interacting with z;7 and x2 (lower) in excess of
their expected null value for the simulated data. The lower red bars represent the

corresponding null standard deviations.

After identifying those variables that interact with others, it is of interest to determine the
particular other variables with which each one interacts. The upper frame of Fig. 6 displays the
values of {Hyx }3° (yellow bars) where

iy, = Hy— B, (54)

Here Hjy is given by (44) for the respective variables (z;,z;) and H j(g) is the corresponding
expected null value averaged over ten replications of the parametric bootstrap (Section 8.3).
The red bars plotted over the yellow ones reflect the corresponding null standard deviations
o,

Here one sees that x; is dominately interacting with z2 and z3 and there is no strong evidence
of z1 interacting with variables other than x5 and x3.

Since x; is seen to interact with more than one other variable, one can proceed to determine
the orders of the corresponding interactions. The lower frame of Fig. 6 shows {Hi2;}3° (yellow

bars) with

5 7 (0

Hjy = Hjp — Hj(kg (55)
being the null mean adjusted analog of (46), along with {O'g)l 10 (red bars). This plot reveals
that z1 and x5 jointly interact with z3, but with no other variables, implying a three—variable
interaction among these three variables but no other three—variable interactions involving x; and
xTg.

22



Simulated data - Interactions with x4

0.4 —
=
2
® 0.3
@
g 0.2
51
©
& 01+
£
00 - NN s BN e N e
1 2 3 5 6 7 8 9 10
Variable
Simulated data - Interactions with x5
0.4 —
e
5)
§ 0.3
@
§ 021
3
©
o 0.1
£
0.0 - (NN — I S s—
1 2 3 4 6 7 8 9 10

Variable

Figure 7: Two—variable interaction strengths of variables interacting with x4 (upper), and x5
(lower) in excess of expected null value for the simulated data. The lower red bars represent
the null standard deviations.

The upper frame of Fig. 7 shows {Huj x4 (54) (yellow) along with the corresponding 04(1(11)
(red) for the first ten predictor variables. Here one sees that x4 tends to only interact with .
The lower frame shows the corresponding interaction plot for x5, which is seen to only interact
with z4. Thus z4 and x5 interact only with each other and there is no evidence that they interact
with any other variables.

The conclusion to be drawn from this analysis of interactions is that these data provide strong
evidence for a three—variable interaction effect between z1, z2, and x3, and a two—variable
interaction between x4, and x5. There is no evidence for any other interaction effects. Note
that the noise variables xg and x1¢ that were judged from (35) to be irrelevant are seen to be
inconsequential in the analysis of interaction effects and thus need not have been considered.

The particular target function (51) generating these data was chosen to illustrate the prop-
erties the test statistics used to uncover various types of interactions. As such it involved strong
interaction effects among some of the variables and none at all among others. Target functions
occurring in practice seldom have such sharp distinctions. Generally the various predictor vari-
ables tend to be involved in a wide variety of interaction effects of varying types and strength,
and the goal is to uncover those (if any) that are sufficiently important.

9.1.4 Partial dependencies

Figure 8 displays partial dependence (40) plots on selected variables as suggested by the analysis
of interactions above. For display purposes all partial dependence functions are translated to
have a minimum value of zero. The partial dependencies on (z1, z3) and (x2, x3) are very similar
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Figure 8: Plots of partial dependence functions on selected single variables and variable pairs
for the simulated example.

to that shown for (x1,x2) in the upper left frame, and that for xg is very similar to that shown
in the lower right frame for x7; but with opposite slope. Comparing these with the actual
target function (51), one sees that they provide a fairly representative pictorial description of
the dependence of the response on the predictor variables.

9.2 Boston housing data

This is a well known public data set often used to compare the performance of prediction methods.
It consists of N = 506 neighborhoods in the Boston metropolitan area. For each neighborhood
14 summary statistics were collected (Harrison and Rubinfield 1978). The goal is to predict
the median house value (response) in the respective neighborhoods as a function of the n = 13
other (predictor) variables. Here we investigate the nature of the dependence of the response
(measured in units of $1000) on these predictors using the tools described in Sections 6 — 8.
Applying RuleFit to these data produced a model (25) involving 215 terms (rules + linear)
with nonzero coefficients. The average absolute prediction error (52) was aae = 0.33 as estimated
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by 50-fold cross—validation. The corresponding error for an additive model restricted to main
effects only (L = 2 ) (13) was 0.37, and that for a model involving only linear terms (24) was
aae = 0.49. Thus, the target function appears to be highly nonlinear with some evidence for

interaction effects.

9.2.1 Rule importance

Table 2 shows the nine globally most important terms (28) (29) resulting from the RuleFit model
(25) (26), in the same format as Table 1. The most important term by a substantial margin is
the linear function of LST AT (percent of lower status population). Its coefficient b is negative
indicating that neighborhoods with larger values of LST AT tend to have lower valued homes.
The linear predictor AGE (fraction of houses build before 1940) has a similar effect to a lesser
degree.

Table 2

Boston housing data: nine most important rules.

Imp. Coeff  Sup. Rule

100 —0.40 linear: LSTAT

37 —0.036 linear: AGE

36 10.1  0.0099 DIS <1.40 & PTRATIO > 17.9 & LSTAT < 10.5
35 2.26 0.23 RM >6.62 & NOX < 0.67

26 —-2.27  0.88 RM <745 & DIS >1.37 & TAX > 219.0

25 —-1.40  0.41 DIS > 130 & PTRATIO > 194

20 2.58 0.049 RM > 7.44 & PTRATIO < 17.9

19 1.30 0.21 RM > 6.64 & NOX < 0.67

18 2.15 0.057 RM > 745 & PTRATIO < 19.7

The coefficient a of the most important rule is roughly five times larger in absolute value than
that of the others and indicates neighborhoods with exceptionally high housing values. These
neighborhoods are characterized by being very close to Boston employment centers (DIS), high
pupil-teacher ratio (PTRATIO) and very small LSTAT. This rule describes only five of the
506 neighborhoods: two of the six neighborhoods in Back Bay, and all three in Beacon Hill. The
other rules in Table 2 indicate that neighborhoods with larger houses (number of rooms RM)
and lower pollution (concentration of nitric oxide NOX) , as well as larger houses and lower
PTRATIO tend to have higher valued homes. Neighborhoods not very close to employment
centers, combined with smaller houses and higher tax rates (T'TAX), as well as combined with
high PTRATIO, tend to have lower valued homes.

9.2.2 Input variable importance

The upper left frame of Fig. 9 shows the global relative importances of the 13 predictor variables
(28) (29) (35) averaged over all 215 terms in the model. In addition to those variables presented
in Table 2 there is some indication that crime rate (CRIM) has some influence on housing
values. The upper right frame shows the corresponding importances for predicting median home
value in the single neighborhood comprising the town of Manchester (30) (31) (35). Here RM
and T'AX are relatively more influential for this prediction than on average, whereas LST AT is
considerably less influential. The lower left and right frames respectively show the corresponding
relative variable importances for the 10% lowest (32) (34) (35) and 10% highest (32) (33) (35)
predicted housing values. For the lowest predictions the variable LST AT dominates, being more
than twice as important than any other variable. For the highest predicted values RM is the
most important variable and PI'RATIO is nearly as important as LSTAT. Pollution NOX
seems to be roughly equally relevant everywhere.
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Figure 9: Input variable relative importances for the Boston housing data as averaged over all
(upper left), the 10% lowest (lower left) and 10% highest (lower right) predictions, and for
predicting the single neighborhood of Manchester (upper right).

9.2.3 Interaction effects

Figure 10 shows the values of {H;}1? (53) (yellow), along with the corresponding null standard
deviations (red), for the Boston housing predictor variables. There is strong evidence for inter-
actions involving NOX, RM, DIS, PTRATIO, and LSTAT. Here we investigate further the
nature of those involving RM and LSTAT.

The upper frame of Fig. 11 displays the values of {H rM,k S k2rM (54) (vellow) along with
the corresponding null standard deviations (red). One sees strong evidence for an interaction
effect between RM and NOX and between RM and PTRATIO. The lower frame shows the
corresponding plot for LST AT indicating substantial interaction effects involving LST AT and
NOX, and LSTAT and DIS. Since RM and LST AT are each seen to interact with more than
one other variable, one can use (55) to investigate the presence of three-variable interactions. In
this case however, the analysis revealed no evidence for any three—variable interactions involving
RM or LSTAT. This strategy can be continued to potentially uncover additional interaction
effects if any.
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Figure 10: Total interaction strength in excess of expected null value of the input variables for
the Boston housing data. The lower red bars represent the null standard deviations.
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Figure 12: Plots of partial dependence functions on selected variable pairs for the Boston
housing data.

9.2.4 Partial dependencies

Figure 12 displays partial dependence functions (40) on the four variable pairs indicated above

as participating in two—variable interactions. From these plots one can study the detailed nature
of the corresponding interaction effects.

9.3 Adult Census Income data

This is also a well known public data set. It consists of demographic information on 32561
individuals obtained from the US Census Bureau (Kohavi 1996).

The goal is to use these
data to construct a model for predicting whether an individuals’s income is greater the $50000
using the values of 14 other demographic variables as listed in Table 3. Seven variables are seen

(column 4) to realize orderable numeric values whereas the other seven take on differing numbers
of unorderable categorical values. There are also missing values in these data.
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Table 3

Adult census income variables

var. symb description Values
1 AGE age numeric
2 WKCLS work class cat: 8

3 FNLWGT  final weight numeric
4 EDU education numeric
5 EDUNUM  education—num not used
6 MARSTAT marital status cat: 7

7 occupr occupation cat: 14
8 RELSHP family relationship  cat: 6

9 RACE race cat: 5
10 SEX gender cat: 2
11  CAPGAIN capital gain numeric
12 CAPLOSS capital loss numeric
13  HOURS hours per week numeric
14 CNTRY native country cat: 41
15 response I (income > $50000) cat: 2

An additional test data set consisting of 16281 different individuals is also provided to esti-
mate generalization accuracy. These data sets have been often used in the literature to compare
the predictive performance of various binary classification methods. Here we illustrate the use
the interpretational tools developed in Sections 7 and 8 to investigate aspects of the predictive
relation between the 14 demographic variables and high income (> $50000). The fifth variable
in Table 1 is identical to the fourth and so it was not used in the analysis.

Applying RuleFit to the training data set produced a model (25) involving 214 terms (rules
+ linear) with nonzero coefficients. The error rate on the test data set was 12.8%. The corre-
sponding error rate for an additive model restricted to main effects only (L = 2) (13) was 13.6%.
Thus, allowing interactions provides a small improvement in predictive accuracy as measured by
error rate. However, error rate is generally an even less sensitive measure of target (2) estimation
accuracy (20) than is prediction error (52) for regression.

9.3.1 Input variable importance

The upper left frame of Fig. 13 displays the relative importances of the respective predictor
variables globally over the entire input space (28) (29) (35). Roughly eight of the input variables
are seen to substantially contribute to the predictive model. The upper right frame shows the
corresponding importances for predicting a randomly chosen individual (30) (31) (35). The lower
left and right frames respectively show the corresponding relative variable importances for the
10% lowest (32) (34) (35) and 10% highest (32) (33) (35) predicted odds of income greater than
$50000. Although there are some minor differences, all of these variable importance distributions
appear quite similar indicating that here the respective variables have nearly the same relative
influence for all predictions.

9.3.2 Interaction effects

Figure 14 shows the values of {H;}1* (53) (yellow), along with the corresponding null standard
deviations (red), for the adult census variables. Most of them appear to be involved in interac-
tions with other variables, although the strengths of these effects as measured by (53) are not
large. Here we investigate further the nature of those involving the two largest, M ARST AT
and AGE.
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Figure 13: Input variable relative importances for the adult census data as averaged over all
(upper left), the 10% lowest (lower left) and 10% highest (lower right) predictions, and for the
single prediction at a randomly selected observation (upper right).

Figure 15 displays the values of {E[MARSTAT,k}k;éMARSTAT (54) (yellow) along with the
corresponding null standard deviations (red). One sees evidence for an interaction effect between
MARSTAT and OCCUP and between M ARSTAT and CAPLOSS. Figure 16 shows the
analogous plot for interactions with AGE. Here one sees fairly strong evidence for an interaction
effect between AGE and OCCU P and between AGE and SEX, along with weaker evidence for
an interaction between AGE and RELSHP. Since both MARST AT and AGE are each seen
to interact with more than one other variable, one can use (55) to investigate the presence of
three—variable interactions. As with the Boston housing data however, the analysis revealed no
evidence for three—variable interactions involving either of these variables. One can proceed in
this manner to investigate the nature of the interactions involving other interacting variables as
indicated in Fig. 14.

9.3.3 Partial Dependencies

Figure 17 displays the joint partial dependence on M ARST AT and OCCUP. The value “M”
indicates missing occupation values. Each occupation distribution is translated to have the
same (zero) minimum value so as to remove the additive effect of different marital status values.
Thus in the absence of an interaction between these variables all OCCU P partial dependence
distributions, conditioned on different values of M ARST AT, would be the same. Here one sees
very similar distributions for the five M ARST AT values involving no spouse present in the
household. The distribution for military spouse also closely resembles those with no spouse,
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Figure 14: Total interaction strength in excess of expected null value of the input variables for
the adult census data. The lower red bars represent the null standard deviations.

with some occupation values not represented in the data for this case. The distribution for
civilian spouse is fairly different from the others indicating that the interaction effect between
these two variables detected in Fig. 15 mainly reflects differing odds of high income for married
people with the spouse present in the household.

Figure 18 shows the partial dependence of the RuleFit model jointly on AGE and SEX.
The partial dependence on AGE is seen to be quite different for males and females reflecting the
interaction effect between these variables detected in Fig. 16. The contribution of AGFE to odds
of high income for both genders generally increases with increasing AGE reaching a maximum
around 50 — 55 years old, and then decreases for higher ages. The primary difference between
these two distributions occurs in the interval between ages 30 and 40 where the odds of high
income continue to rapidly increase with AGE for males, but do not increase at all for females.
In fact there is some evidence that the odds decrease in this age range for women. Outside this
range the rate of change of the partial dependence of odds of high income on AGFE is nearly
identical for both sexes.

10 Related work

Predictive methods based on rules have a long history in the machine learning literature (see
Mitchell 1997). Quinlan 1993 designed a variant of C4.5 (“C4.5 Rules”) where the final model
consists of a set of rules. A single large decision tree is induced and then converted to a set
of rules, one for each terminal node. Each such rule is subsequently pruned by removing the
conditions (indicator functions) that improve its estimated prediction accuracy. Finally, the
pruned rules {r,,(x)} are each assigned a class label and then listed in ascending order of their
estimated accuracy. To obtain a prediction at a point x the single rule highest in this list for

31



Adult census — interactions with MARSTAT

0.15 —
=
=
—
=
B 0.10 —
f
S
S
o
(5]
=
N Q
0.00 — I [ - - s
L w — = = o [a Ll > = w) w >
5] — &) a =] = T &) [} = 175} o o
<< < = [T = o N < n b o > =
= = =] o — o <L = ) =
= = a o Vaﬂ@ble o = (&)
o ] o 6

Figure 15: Two—variable interaction strengths of variables interacting with M ARST AT in
excess of expected null value for the adult census data. The lower red bars represent the null
standard deviations.
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which 7,,(x) = 1 is used. Although there are fundamental differences, this approach is connected
to the work presented here in that a decision tree induction algorithm is employed as a greedy
mechanism for generating the rules.

A different rule induction paradigm used in classification context is sequential covering, that
underlies the Inductive Logic Programming (ILP) algorithms ( Lavra¢ and Dzeroski 1994). The
generic sequential covering algorithm induces a disjunctive set of rules by learning one rule at a
time. After each rule is derived, the algorithm removes from the training data set the “positive”
examples (specified y—value) covered by the rule. The process is then iterated on the remaining
training observations. As with C4.5 Rules, the generated rule set is ordered and the single rule
highest in the list that covers a point x is used for its prediction. Actual ILP algorithms such as
CN2 (Clark and Niblett 1989), RIPPER (Cohen 1995) and PROGOL (Muggleton 1995) differ
with respect to the detailed techniques that implement the generic paradigm.

Although rule based, RuleFit produces fundamentally different models than the methods
described above, both with respect to the methodology employed to derive the final model, and
the structure of this model. RuleFit models (25) are additive in rules (7) and linear terms (24)
with optimized weights (coefficients), whereas the above methods produce disjunctive sets of
rules using only one in the set for each prediction.

Classification ensembles that combine simple “weak” learners that are unions of conjunctive
rules can be found in algorithmic implementations of the stochastic discrimination paradigm
(Kleinberg 1996). Each weak learner is produced by a random mechanism (e.g. a finite union of
rectangular boxes where each box is generated using a random set of variables, random centering
and random length edges). The corresponding weak learners chosen for the final model are
required to satisfy certain “enrichment” and “uniformity” conditions. Details are presented in Ho
and Kleinberg 1996 and Kleinberg 2000. As with RuleFit, stochastic discrimination combines its
base (weak) learners in an additive manner. The major differences are the mechanism employed
to generate the additive terms and the fact that stochastic discrimination performs a simple
averaging whereas the coefficients of RuleFit models are fit through a regularized regression
(26).

Designed for problems involving binary valued features, logic regression (Ruczinski, Kooper-
berg, and LeBlanc 2003) uses regression to fit the coefficients of a model that is additive in
logic rules. The boolean terms of logic regression’s additive model differ from those in RuleF'it
(7) in that they allow the presence of disjunction as well as conjunction; these terms are called
“logic trees”. Another major difference is the modeling methodology. In logic regression, a set
of admissible operations is defined for modifying the logic trees and the model building process
involves randomly applying these operations in a simulated annealing context. Due to the inten-
sive nature of the computation involved with the simulated annealing approach, logic regression
can accommodate models involving relatively few logic terms. Also generalizations to numeric
and multiple-valued categorical variables complicate this approach.

Closer to the approach presented here is that of Rosset and Inger 2000. They constructed
binary classification models using (unregularized) linear logistic regression where the predictors
were taken to be the original input variables along with manually selected and modified C4.5
rules based on those variables.

Roosen 1995, Owen 2001, and Jiang and Owen (2001) study interaction effects in “black—
box” models using the functional ANOVA decomposition of F(x) and product measure. Hooker
2004 discusses the limitations of using product measure in the context of observational data
and proposes alternatives that are intended to mitigate this constraint. Our approach to in-
teractions based on partial dependence functions (Section 8.1) does not involve the functional
ANOVA decomposition. Hooker 2004 observes that associations among the predictor variables
can sometimes introduce distortion in partial dependence estimates based on empirical models.
This motivates our approach of suppressing spurious interactions presented in Section 8.2, and
using null distributions as derived in Section 8.3 to calibrate observed interaction effects.
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Figure 17: Joint partial dependence on M ARST AT and OCCU P for the adult census data.
For no interaction effect, all OCCU P partial dependence distributions conditioned on different

values of M ARST AT would be the same.
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Figure 18: Joint partial dependence on SEX and AGFE for the adult census data. For no
interaction effect, the partial dependence on AGE conditioned on different values of SEX
would be the same.
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